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ON STANDARD AND NONSTANDARD APPLICATIONS
OF WAVELET ANALYSIS

M.V.Altaisky

We review the present status of wavelet analysis, the method of decomposition with respect
to representations of the affine group, which is effectively used everywhere in signal and
image processing and is receiving a lot of interest in the context of nuclear physics data
analysis. Some results of the application of the wavelet decomposition to the experiments
carried out at JINR are presented, and some new possible applications are indicated.

The investigation has been performed at the Laboratory of Nuclear Problems, JINR.

O cranaapTHEIX H HeCTAHAAPTHBIX NMPHIOKEHHAX BeilTeT-aHAIH3A
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Beitner-ananmns — Meron o6paGoTky curHanos u u300paxeHHii — paccMaTpHBaeTCs KaK
METONl pasnoXeHnH Mo NpencTaBneHuaM adbunHoM rpynny. IpeacTasieHy pe3ynbTaT mpHMe-
HEHHUS BEHNET-AHANN3A K SKCTIEPUMEHTAM, IPOBOAMMbIM B OMSIY, 1 BOIMOXHOCTH HEKOTOPBIX
HOBBIX IIPWIIOXEHHIA.

* PaGora Buinonnena B JlaGoparopuu siepHbix npobnem OUSIH.

1. Wavelets: An Intuitive Description of the Method

The principal shortcoming of common Fourier analysis is its nonlocality. Due to the
uncertainty principle, a signal cannot be localized simultaneously in frequency and time
with arbitrary precession. From the practical standpoint this nonlocality is always
undesirable. This means that we usually want (i) to keep the contribution of low and high
frequencies separately reasonable and (ii) we want the decomposition of a signal to be

robust with respect to small perturbation; both are evidently not the case for the Fourier
decomposition

Aoy == ¢ g3) as. (1)

To overcome this difficulty the windowed Fourier transform [1]

Rovv=] e f) Wex - 1) dx @
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was suggested by D.Gabor in 1946 for the purposes of signal processing. Unfortunately,
there are some faults with this idea. Transform (2) is evidently poor in: resolving
wavelengths longer than the window W(x) width. Conversely, the decomposition of short,
but high frequency signals requires a broad window with a large number of-cycles. The
process of reconstruction in this case contains a large number of terms with comparable
amplitudes and hence turns out to be numerically unstable.

Conspicuously, what one needs is a scheme with a broad window for low frequency
signals and a narrow window for high frequency signals. Such a scheme, independently
developed by several authors at the beginning of 1980s [2], is called a wavelet transform.
Practically, it is a separate convolution of the signal in question with a family of functions
obtained from some basic one — basic wavelet — by shifts and dilatations:

T (@0 f=] ¥, (0 fx) ds, @

where

1 T—X
v = v 1]

are usually referred to as (affine) wavelets.

2. Mathematical Background

Being a quasi-local integral transform, affine wavelet decomposition (3) has found a lot
of practical applications to signal processing. In parallel with practical development it has
found a profound and abstract theoretical background in the Lie group theory [3]. In the
present paper we start with its general properties and only then turn to applications and
implementation.

Let us consider a Hilbert space H with transitive action of a Lie group G on it. Let U
be a continuous square-integrable unitary representation of G. The vector y € H is said to
be admissible (with respect to G), if

J 1w, Uy w12 dis () < =,
G
where duL(g) is a left-invariant measure on G.

The key result which allows decomposition of an arbitrary vector v € H with respect
to the representation U(g), g € G, is summarized by the following theorem' [4].

Theorem 1. Let U be a square-integrable unitary representation of a separable locally
compact group G (with left Haar measure dj;) on the Hilbert space 'H, and let ye H be

an admissible vector. Let
C,=lvll 2 f 1w, u@ w2 du, () < )

. G
ar-n —L%-norm is implied).

'Here we present the weak form of the theorem. In general, the unitarity is not strictly required.
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Then for all v € H the following decomposition holds (the integrals converging weakly)

v=C." [, U@ v) Ute) v, (o). ®)
G

Thus, to acquire good analytical properties, we must require the window integral transform
(3) to have the form (5).

Considering a Hilbert space of square integrable functions (of one variable, for
simplicity) L2(R) with transitive action of the affine group

G:x—>x'=ax+b, (6)

(ab) 0 (a’.b') = (ad’, ab’ + b), | @)

we define the representation U(g) as

Va5 Vi = v () ®

and the left invariant measure in the form

da db
dp(a, b) =552,
a

which follows from (7).

For the case of affine group (6), which is in question in the present paper, it is
convenient to evaluate the normalization constant C defined by (4) in Fourier repre-

sentatlon the substitution

¥ == [ (o) do

and (8) into (4) after a straightforward calculation gives

ENT
cw=2nj"—"i§(‘—:fl—dm<oo, ©)

while the tranform itself has the form:

T @b =2 Ia|\y( ]ﬂt)dt (10)

0= [ g[S rann a2, an

2Here and after the tepresentation U(a, b) #(w) = Vial {i(a,w) exp (i wb) is useful to simplify calculations.
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3. Basic Properties

The pair of a direct and an inverse wavelet transform (10,11) taken together with the
admissibility condition (4) still leaves us considerable freedom in the choice of analysing
wavelet y. Practically, the admissibility condition (4) taken in the Fourier representation (9)
means the vanishing behaviour of ¥(®) in the neighbourhood of w=0; which can be
redundantly satisfied if y(0) =0 is implied; the latter, in turn, means

Jwwar=o. (12)

The latter equation provides the insensibility of wavelet transform to a constant shift of the
function in question

[Tw(a, b)I(f + const) = [Tw(a, b)f.

The simplest choice of analysing wavelet satisfying the condition (12) is the so-called Haar
wavelet:

1 for O<x<1/2
y(x)=1-1 for 1/2<x<1
0 elsewhere .

The Haar wavelet, being the simplest one for numeric implementation, has got a lot of
applications, mainly in image and signal processing, which we consider later in this paper.
The next straightforward generalization of the condition (12) is the vanishing momenta
requirement

dex’"w(x)=0, YmO<m<nyne Z

This requirement gives rise to a family of vanishing momenta Gaussian wavelets [5]

14l
gn(x)—(—l) dx"e , n>0. (13)

2
In Fourier space gn(a)) = (in)" ¢ " has a zero of order n in ®=0.

2

In this family the first two wavelets are most popular: g x)=-x exp(— % J, which is

antisymmetric and thus suitable for some statistical applications to be considered later, and
the Maar wavelet gz(x) =(1 -x2) exp (-—% ], often called the «Mexican hat».

The normalization constant Cg , which can be easily calculated in the Fourier space, for

n

the family of vanishing momenta wavelets (13) is

C, =2n(n-1)!

n

Among the other wavelets, the difference of two Gaussians
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2 2 2
_ A
v,(®) =% A= NG ¢ P eitre X

considered in the pioneering work [6] should be mentioned.
Another property of wavelet analysis provided by (8), is that a dilated wavelet has the
same energy as the original one

J vl
vz ¥|a
Since the energy is conserved under dilatations, wavelet analysis is equally sensitive to the

contributions of low and high frequency bands. It is its great advantage, say in comparison
to Gabor expansion. The dilatation parameter a here has a plain interpretation: if y(f) is a

sound recorded on a tape, then al/? y(t/a) with a=2 is the sound obtained by replaying
the tape at half speed.
The (global) energy conservation law also holds:

2
dt=J|\u(t)lzdt.

Jlol2a=[ 11 (5?22

a

Among other properties of the wavelet transform we should indicate its property under
scale transform:

(T, (a, )] k) = AT, (Aa, AB)] fi).

We should also mention that in numerical implementations the decomposition of a unity

?cw =[uie) vy du o) (vl U™ Ge),
G

which follows from general formula (5), turns out to be a sum over a discrete frame
A A
a1y Ly vl <81,
J

where A, B>0 are some positive constants. This basis, nonorthogonal and redundant in
general, ensures the stability of the wavelet transform: local perturbations of wavelet
coefficients cause only local perturbation of the image.

4. Applications to Signal Analysis and Synthesis: First View

As was mentioned in previous section, the dilatation of a wavelet with a factor a=2
corresponds to the half speed playback of a tape or to one octave down shifts. Evidently,
any musical melody remains recognizable after a global shift by an integer number of
octaves. This fact makes the wavelet transform a credible tool in acoustics, speech
processing and music.

For practical applications it is convenient tq use some particular forms of the integral
transforms (10), (11). Here we list these transformations following [6].
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1. Voice transform of f with respect to y is a wavelet transformation (10) taken on the
logarithmical scale.

2“
@E0Nb, 0 =7 [ wE 26 -0 f) a, (14)
v
where &k =ﬁ'j%9‘zdm. The scale factor 2 is chosen for fast numerical
Vv In2 w
implementation.

The voice transform allows an elegant way to represent inverse formula (11) in the
form of an octave series

£y = [ (@ 0, 0+ @ 0, 0] e

n+1

_ +, - +o J +
or =Y f+f, where fi(1)= Zy 1)t w) du.
n=-oo n
2. Another useful representation, which has some advantages being not expensive in
memory space, is known as a cycle-octave representation

—i
(€N =2=[y -2 ) dr
v
Practically, instead of basic representation (10), (14) the Fourier representation is often used
(T, N, @)= C; 12 al /2 [ 9§ (@a) fiw) do (15)

and
(226, w =K, [ Gt 2* 0) fiw) do,

respectively. This provides a possibility of using FFT and FFT-like algorithms.

5. Wavelets and Fractals

The best way to study any physical problem with known symmetry is to build a
functional basis with the symmetry as close to that of the problem as possible. For this
reason a system of spherical functions is the best one to fit the problem with spherical
(SO,) symmetry, while Fourier decomposition is apt to the problems invariant under

translations.

The matter turns out to be even more conspicuous when one studies fractals — singular
(nondifferentiable) self-similar objects [7]. On the one hand, the invariance under scale
transformations (or self-similarity) is the symmetry group the WT is based on; on the other,
with no requirements of differentiability the wavelet analysis seems to be an ultimate tool
to study singular objects. In standard multifractal analysis, the properties of these singular
objects are considered in terms of a (singular) measure Y, singularity spectrum of this
measure fla) and the power behaviour of a partition function
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oafx )
2,9 =3, @WI~1"D wey~1 7,
i

where the sum is taken over all disjoint intervals of size I, containing the points of the
considered fractal set; (W), is the measure of the i-th interval. The power behaviour of the

partition function is characterized by some function 1(q) related to f{or) and expressed via
fractal dimension

p =49
9 qg-1°

For a globally self-similar object (monofractal) Dq =D, does not depend on ¢

oc=f(a)=Dq=Do,Vq. )
To perform wavelet decomposition of a singular measure p(x) =J-du it is convenient to

0
use the vanishing moment wavelet family (13).

The measure p(x) can be represented via its wavelet transform

_~-1/2{dadb 1 (x-b
k) =C; ({ e e,

An arbitrary function g(x), cannot be used as a basic wavelet — it is required to satisfy the
admissibility condition (4). This restriction, however, is rather loose, and allows one to
choose a wavelet within a large variety of admissible functions, say from the family (13).
This redundancy is undoubtedly of great benefit for the analysis of fractal structure. It
provides us with a powerful mathematical microscope with magnification a! and
dispensable optics labelled by n.

To illustrate this, we can consider the «devil’s staircase» — a singular measure of the
triadic Cantor set shown in Fig.1. The maxima of its wavelet transform T g(a, x) |, shown in

Fig.2, exactly resemble the structure of the original set.

Besides the graphic facilities, a number of useful theorems provide a basis for
analytical studies of fractal objects via wavelets. Roughly speaking, the analytical treatment
is based on the fact that the collection of all wavelet transform maxima contains complete
information on the measure in question.

Some useful results are listed below:

*  Theorem 2 (Holshneider, [8]). Let U be a bounded locally integrable Jfunction such
that

M)~ G =0(|x~x IM,  heTo, 1]
then
T (a, 9= 0@"*") (16)

inside the cone |x—xol <const.
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Fig.l. «Devil's staircase» — a singular measure of the triadic Cantor set
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Fig.2. Wavelet coefficients for a «devil’s staircase» taken with gl-wavele[
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* The partition function can be constructed directly on the set of wavelet
coefficients:

Z(a, q) = > I T (a, ) |4,

over all maxima: {x, (a)}

The power behaviour of the measure can be derived from this equation like free energy in

thermodynamics 1(g) = lim InZa.q) .
a—0 Ina

6. Wavelets in Biology

The analysis of DNA sequences is one of the principal branches of modern cellular
biology. It was shown in a number of recent studies that the distribution of nucleotides A,
T, C, G in a real DNA chain is a fractal one. Thus, the fractal and multifractal tools can be
applied. Wavelet analysis is an indispensible tool in this relation. ‘

In general, the occurrence of a certain nucleotide in a certain position of the DNA
chain, labeled by a length parameter I, can be described as a random process X(l, - ). Thus,
for the case of the above-mentioned 4-letter alphabet, we deal with a probability space
(Q,U, P), with Q= (A, T, C, G} and a family of four random processes

XZ= {Xz(l, W); /e R, me Q},
such that

_[1if o=z
X @)= { 0 otherwise.

Instead of calculating correlations, as was done in [9], we proceed with the integral
measures

1) =X (I, ) dP(w) di=fay,, amn
0 0

which count the total number of each of the nucleotides z=A, T, C, G up to the I-th position
in the chain.

Since the measures in question (17) are supposed to be generally nondifferentiable, we
first have to study their scaling behavior p(x) — u(xo) = Ix - Xy l h,

The extraction of the Lipschitz—Holder exponent 4 from the experimentally obtained
measure is a typical problem in physics of fractals, in DNA study this was performed in the
same way, using the scaling theorem [8] for the function H(l) (see eq.16). The details of the
method can be found in [10]; hereafter we present the main results obtained in [10] with
the help of the 8,-wavelet,

For the DNA sequence of Chinese Hamster cells [11] with the length of 11838
nucleotides the middle-data section of wavelet coefficients gives the scaling exponents .
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Figs.3-‘—6. The dependence of (binary logarithms of) g -wavelet coefficients for the measure

functions taken at the middle of the data for the adenine, thymine, cytosine and guanine,

respectively. The values of the Lipschitz—Holder exponents presented in the pictures were obtained
with the best line approximation
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The logarithmic plots log2 l Tg(a, x)l for the measures Hp Mo M, ug are presented in
Figs.3—6. The plots were obtained at the middle of the range, x =4096; however the

behaviour of the sections at other points is not seriously different. The corresponding
Lipschitz-Holder exponents are presented in the table.
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Figs.7—10. The grey density plots of wavelet coefficients

(up to 210 power scale) for the adenine, thymine, cytosine
and guanine, respectively. The fragmentation processes

clearly distinguish at 25, 27 and 27 scales
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h, hy k. h.

0.60 0.43 0.60 0.53.

These coefficients are conspicuously close to the s =1 /2 of the Brownian motion, the
purely random process. However, the difference hz—h , where z=A, T, C, G, which has

the magnitude of several per cent, cannot be regarded as vanishing. This difference can be
caused by branching processes which can be clearly seen in the density plots of wavelet
coefficients, at scale approximately equal to 27 or 2%, see Figs.7—10.

Thus, we conclude that the scaling in DNA chains does really exist. This scaling is of
multifractal nature (see, e.g., [11]) rather than global one.

As an auxiliary result, we can mention that the color-density representation of wavelet
coefficients which proved to be a powerful tool for the analysis of general fractals seems

to be of great use for identifying branching processes in nucleotide chains as a computer
graphic tool.

7. Wavelets in Nuclear Physics

Up to now the most common applications of WT belonged to either turbulence data
analysis, where scaling is an inherent feature of fluid physics, or to image processing,
where the singularity detection and local reconstruction are significant.

Recently a lot of interest was attracted to possible applications of wavelets in both
theoretical and experimental nuclear physics. The main merits of wavelets valuable for
experimental data processing are:

« Firstly, since the works of Zimin, WT proved to work efficiently in situations

where cascade processes play a significant role. Therefore, if the measure W(x)

describes an event number at a certain point x, (x € R 3in general), then the search
for jet events can be performed with the aid of WT, in a way similar to the «devil’s
staircase» singularity reconstruction (See, e.g., [7,10] for details).

« In the simplest one-dimensional case, x € [0, 2n] can be taken for the angular
coordinate of the detector; the WT can be regarded as a microscope with variable
angle resolution.

«  Secondly, if x is regarded as time (or energy), WT works as a tool for studying
time (or energy) scaling of the process described by time (or energy) event density
H(x).

«  Thirdly, being local in both x and Fourier space, WT can provide more information
in spectral problems, where Fourier methods fail or work insufficiently.

» The contributions of different frequency bands to WT are kept reasonable
separated. This separation is achieved with quite insignificant loss of resolution in
time variable (if a signal is considered). That’s why the reconstruction is «robust»
in the sense of being stable under small perturbations, which enables one to
distinguish between «useful» low bands (in Fourier space) and contributions of
close high frequencies @, — w, =0 usually generated by noise.
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From the theoretical point of view the possible applications of wavelets are even more
appealing, since the wavelet transform is based on the scaling symmetry — one of the most
important symmetries in physics. Here we mention a few facts related to self-similarity
which could be studied with the help of wavelets [12]:
*  Local Parton Hadron Duality [13], i.e., the similarity between momentum spectra
of hadrons and those of partons. This similarity, which is closely related to n-
parton correlations and multiplicity moments behaviour in phase space, has been
studied in [14].

* The fractal behaviour of final multiparton states [16] was studied by several
authors. They calculated the fractal dimension directly from multiplicity
distribution moments and study the entropy of secondary particles

S=-3P P,
n

where P is the probability of having «» produced particles in the final state [17]. They

found the scaling behaviour, but, as the method was rather rough (see [7] for the
shortcomings of the fractal dimension calculations without wavelets), rare, but interesting
events could be lost,
*  Recently, fractal analysis of multiparticle production in hadron-hadron collisions
has been done by other authors [15].
All these studies evidently admit the application of wavelet transform. Recently, the
wavelet transform as an image processing method was also applied to separation of

secondary particles K-mesons, in particular) in d + Au interactions. Following [12], here we
describe the method and results.

7.1. Secondary Particle Separation as an Image Recognition Problem

7.1.1. Problem. The wavelet method has been applied to the processing of time-of-
flight vs. energy data plots obtained from d+ Au — ... — reactions in experiments carried

out at the Nuclotron using the internal target at a deuteron momentum of 3.8 GeV/c in
March 1994,

In Fig.12 the mass spectrum of the primary data obtained by standard method of
comparing the time of flight and the energy

=X=— = (18)

is presented.

Due to the presence of both T-mesons and protons (E ~ 250 MeV), which dominate in
the central region of the E vs. TOF plot, Fig.11, it is difficult to distinguish other events in
this region. Besides, high energy protons (E > 400 MeV) due to decreasing energy loss give
a contribution mainly to the low energy region about 200 MeV.
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Fig.12. Spectrum of reconstructed mass obtained from primary data
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7.1.2. Algorithm. The main idea of implying a wavelet analysis to investigation of
events in nuclear and high energy physics is to use its good properties in separating events
from noise. Using wavelet one can look at experimental data with various resolution. This
can be used to search for tracks of particles and different kinds of events, etc.

To use a multiresolution analysis [18] one should choose a family of closed subspaces

Vm cLz(R), m € Z, such that
1. ix) e V, & f2*x) e V.1
2...cV,cV,cVcV_ c V,c.
AV =0, uV_=L*R)
m m
‘3.thereis a Qe V0 such that its linear integer translations (pg(x) = @(x + n) constitute
a basis in V (consequently, functions (p: constitute a basis in V.

4. there exist 0<A < B <, such that for all (c,) _ < I%2),

2 2 2
A% le, P sl T, 2<BY, lc 12
n n n
The orthogonal projections of a function which we analyse on a chain of subspaces

vV, represent snapshots of this function with different resolution. Choosing an appropriate

basic function ¢, one could select different kinds of snapshots.
To make the decomposition close, one should also define a chain of subspaces Wm

orthogonal to Vm, such that

Vo =V, ®W . (19)

m

The coefficients of a projection on v and W, are

5= A0 7 di, d"= [ o) v d, (20)

where in a discrete case a sum is implied. For the simplest case of the Haar wavelet the
basic functions are:

; 1j|"1/2 forxe I
) = K Jk 21
%) l 0 elsewhere, @D
; 277 for 20k - 1) < x < 2k~ 1/2),
Vi) =1 -29/2 for2J(k-1/2) < x <2k, (22)
0 elsewhere

II{ denotes the supporter of j-th level basic functions
1= Il{ =[29k~- 1), 27k).
The approximate reconstruction formula has the form

P =S+ T dr )
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In our two-dimensional problem we used a pyramidal scheme with a basis taken in the
form of a tensor product

h =¥, @0 )®(Y,&9,),

or explicitly, {hl, h2, h3} ={y v, O) ¥ /(x) 9,.0), (p,(x) v, Ay)}. The corresponding
coefficients can be easily derived from formulae (20):

i+l _ j j J
Sek "S5 o2k -1 TSk 2k Tk 1 S
X y X y X ¥ X y X
j+1 o _ _d o
vk ok ™Sk — 1.2k =17 52k — 1,26 "%k, 2k -1 S2k, 2%
Xy x ¥ X ¥ x ¥y x y
dj+1

ol ol J o
@k ok ~S2%k - 12k -1 52k, 2k -1 52k 2k TSk, 2k
Xy x ¥ x ¥ x ¥ x oy

daitl i +s] ~s] —sJ
Gk, k "2 —1,2k 1752 2k -1 TSk — 1,26 TSk, 2
¥ x y x ¥y x ¥y x Yy

where s° stand for the primary data.
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Fig.13. s coefficients plot for the data set of Fig.11
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7.1.3. Results. The primary data E—dt—plot is shown in Fig.11. The X-axis
corresponds to ADC channel numbers, Y-axis to TDC ones. (Both axes are scaled by factor
4). In this plot, against a noisy background we can distinguish two contrast regions: the
upper one, which corresponds to secondary protons, and the lower one, which corresponds
to ®-mesons.

To clear out the contribution of the dominating processes we performed the wavelet
analysis. Having calculated the wavelet image (the Haar wavelet was used) of the initial
data plot we substracted the central domain, in which d® coefficients (See Fig.14)
practically vanish.

The resulting mass spectrum is presented in Fig.15. We identify the central peak near
500 MeV, clearly distinguished in mass histogram,with the K-meson contribution.

Besides, sequentially scaling the picture, we can clearly distinguish 4 regions:

+  upper right region: secondary deuterons

+  two above-mentioned regions

+ a K-meson branch.

7.2. Fitting Distributions with Wavelets

7.2.1. Problem. A typical problem of experimental nuclear physics is that of separating
several Gaussians which contribute to the same experimentaily obtained spectrum. Usually,
to cope with this problem, some parametric methods evolving numerical minimization are
used. Wavelet decomposition provides a nonparametric method to separate the contributions
of several Gaussians [20].

Let us consider an approximation of an experimental data distribution, e.g., a number
of particles per channel vs. energy, by the sum of finite number of Gaussian sources

k2
(- )

N

k
(x)= T -— | 24
fe:xpr % 1 kexp\ 2 k2 ( )

where ) N, =N is the total number of registered particles.
k
If we suppose that fcxp(,\‘) is a square-integrable function, the solution of the equation

Fong®) Z—\/—=N" o]
x) - =exp| ———— — |=
exp . V2no, P 20%
can be found analytically. Let us start with a single gauss distribution
N <
D =T exp | , 25
fgdu.xs "2%6% p 262 (25)

where, without loss of generality, we set .\',1” =x=0.
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Instead of calculating different moments of the probability distribution we perform
wavelet decomposition of the spectrum in question. Since we are going to analyse Gauss
distributions, it is natural to choose the analysing function g — the basic wavelet — from
the family of vanishing momenta wavelets (13).

It should be mentioned, that 8,,(x) does not fit the problem, since c, = and the inverse

o
transform (11) is not defined for this case. This fact hints that the direct decomposition of
fcxp into the sum of Gaussians is not unique, and hence the problem requires more general

system of basic functions.

Prior to study distribution functions with the family of wavelets (13), let us recall some
useful formulae

1. The Fourier transform of the 8, family is
2,00 = @y
2. We can define a formal generating function for the wavelet family 8,
&(s, k) = exp (iks — k2 /2), (26)

such that

Bk=-[ 4] b

: . 27
s=0

For a single Gaussian distribution (25), to calculate the convolution (10) for an
arbitrary basic function from the family 8, we use the generation function (26):

d
(Tgnf gauss)(a’ b) =" (d_s I‘ (TgsfgaUSS)(a’ b)

B (28)
s=0

where 8, stands for g(s, - ). Substituting (15) into the latter equation, we obtain

2
(Ty Bgauss)(@: B)=N v 21:2 J ak exp [ik(b +as) - % @+ J:

exp [ i} zg(b : ai,zzz ) J
a“+
=NVZ

o NE T 2

The formal normalization constant Cq should be replaced by concrete ¢, after taking the
n

§

derivatives.

7.2.2. Single Source Distribution. The simplest way to find the distribution parameters
for the case of a single Gaussian source is to use the coefficients of its 8, decomposition.
Eq. (29) for n=2 leads to
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T b)=N &(_a YV 1 i L (30)
y —_—— X -_ Y i
( fga““)(a )= 2n (a +0'2]J [ a2+<y2}e p{ 2(a2+0'2)]

Taking the derivative 9/ 8a of equation (30) at the central point b=0 we find the extremum

of the g, coefficient at a scale
a_ =\50. 31)
The value of wavelet coefficient at the extremal point is

__N_ssaa2__N_ (592
Ty Joauss) @ O = g >0 -m;(sj | 42

Thus, performing the convolution (10) numerically and finding the maximum of the g,

wavelet coefficient we obtain the dispersion and amplitude of original distribution.

7.2.3. The Distribution with Two Sources. If the distribution is a sum of two Gaussians
and the localization at least of one of them is known, we can find the other with the help
of 8, wavelet.

Without loss of generality we write the analysed function in the form

N, 2 N, @-x ) “
f‘""m“p(‘zog]*m“p T | 33

1

Let us consider the gl-wavelet coefficient at x = 0. Since the first term of r.h.s. of (33) is
symmetric, whether g (x) is antisymmetric under the reflection x — —x, the coefficient
(Tg f(a, 0) depends on the second term of (33) only.

1

Explicitly,
3/2 x'zn

exp| ——5—-

+0° } 2d*+09)

Thus, knowing (Tg (a, 0) we can determine N,oc
1

X
T, pla.0)=N, 3 ( (34)

The transformation with the g, basic wavelet is practically useful when we are looking
for a Gaussian distribution with a center located apart from a certain point x,,. In this case,
since g (x) is antisymmetric, the local Gaussian fluctuations located at X, give no

conmbuuon to (Tg Nia, x ) The extremal condition with respect to the scale variable a
1

(T, f)(a, 0}
AR
da ’
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can be easily derived from (34), where x, =0 without loss of generality. This leads to the
biquadratic equation

3a* - 2x%a* - 30° = 0,

which has a real positive solution

‘\/1+V1+9(c/x)a

aextr =x 3 (35)

-7.2.4. Practical Application. Practically, the method was applied to test the energy
spectrum of plastic scintillators produced in Dubna for the NEMO experiment [21]. The

electron energy resolution was measured with radioactive source 2°’Bi emitting 569 keV
and 1063 keV y-quanta and the corresponding internal conversion (K) electrons with the
energy 481 keV and 978 keV. ’

A typical data sample, produced by a standard source with the coincidence measure
method, is shown in Fig.16. The spectrum (the total intensity) contains the contributions of
K, L, M, N electron lines, and an unknown background.
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Fig.16. NEMO experiment. The electron energy spectrum registered in plastic
scintillator test
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Fig.17. 9, wavelet coefficient for the energy spectrum

Visualizing the wavelet image of the raw data we obtain a clear picture of the whole
process with distinguished local maxima on the scale-versus-coordinate plane. For
sufficiently distinguished peaks relation (31) provides a direct method of calculating
without any numerical fit. For more complicated noisy data the method provides
visualization of local maxima — possible sources of Gaussian distributions. The main
advantage of wavelets, appearing even for the case of visually unseparable Gaussian peaks,
is that we can see the same picture at different scales simultaneously and look for the
sources according to the scale behaviour of wavelet coefficients. Besides, using two
different wavelets, symmetric and antisymmetric, say g, and g, we can make a recurrent

procedure based on formulae (32,34).

The plot of the wavelet image of these data is shown in Fig.17. The X-axis corresponds
to the electron energy (in channe‘ls); the Y-axis corresponds to the 2174 pased scale.

All the local maxima can be clearly seen on the plots. For the sufficiently separated

peaks the energetic resolution () of the peak can be directly determined from equation
31).

Since the statistics is not high enough, it requires both experimental knowledge and
efficient data processing methods to get statistically valuable results from the existing data.
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8. Conclusion

Wavelet analysis, which has been proved to be an efficient tool in all kinds of signal

processing, seems to be even more promising in nuclear physics. There are several reasons
for that:

* Being a robust integral transform, wavelet analysis does not require

differentiability of the function in question and is stable under local perturbations.
That is why it directly (without any preliminary smoothing) provides information
about singularities and self-similarity, if they are present in experimental data.

* It is natural to define wavelet transform directly on probability space (and consider

differentiable functions as a particular case) — thus we have a nonparametric
statistical method [22].

*  Wavelet analysis can be used in theoretical nuclear physics and provides a self-

similar basis in Hilbert space of state vectors [23]. Thus we have a new bridge
between observed statistical properties of quantum systems and their immanent
quantum properties.
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